The activity in each breast-milk sample was measured by loading aliquots from the samples and from a standard in turn into a sodium iodide well scintillation counter. The proportion of Tc-99m bound to breast-milk protein in three of the samples was determined by precipitating the protein with 10% (W/V) trichloroacetic acid (5).

RESULTS

The total volumes and the concentrations of Tc-99m activity measured in the six milk samples are given in Table 1. The concentration of Tc-99m at 2.25 hr after injection of the MAA was 222 nCi/ml; that at 24.5 hr was 8 nCi/ml. Also shown in Table 1 are the proportions of protein-bound Tc-99m in the three precipitated milk samples. There was a small incorporation of Tc-99m into breast protein, and the level appeared to increase with time after administration. An exponential curve, fitted by least squares to the decline of the total concentrations, produced an effective excretion half-life of 4.6 hr, with a correlation coefficient (r²) of 0.99.

DISCUSSION

Wyburn found that the Tc-99m activity in breast milk 7 hr after injection of Tc-99m EDTA was 4% of the activity at 4 hr (6). This early rapid clearance was followed by a slower clearance of a much lower concentration of activity for the period 7–24 hr, where a least squares fit produced an effective half-life of 4.0 hr. Even though DTPA has a metabolism similar to that of EDTA, there was no evidence in our measurements of an early more rapid clearance, and thus we concluded that the pattern of excretion between 2 hr and 25 hr must have been dominated by the MAA injection. Because of the similarity in the half-life of the second phase of ex-
creatin of EDTA found by Wyburn (6) and the excretion rate of MAA found here, the effect of the DTPA aerosol could have been identified only by taking milk samples either between administration of the two radiopharmaceuticals, or earlier than 2 hr after the injection of MAA.

A comparison between the above results and three other published sets of Tc-99m MAA breast-milk measurements is given in Fig. 1 (1-3). Included in the legend are the ages of the babies, the effective half-life (t1/2) from our results, and the t1/2 values from two of the other sets (1,2). The t1/2 and the concentration of activity at any particular time were inversely proportional to the age of the baby. This relation was supported by Heaton's measurements (Fig. 1, curve D) after about 20 hr, when colostrum had been replaced by a rising milk content (3).

It has been shown that a small amount of activity became bound to breast-milk protein. After injection of MAA, Berke et al. (2) found by chromatography that their breast-milk activity was free pertechnetate. Assuming that all the breast-milk activity in Table

<table>
<thead>
<tr>
<th>Time since MAA injection (hr)</th>
<th>Volume of milk sample (ml)</th>
<th>Activity concentration (nCi/ml)</th>
<th>Protein-bound (%)</th>
<th>Total-body absorbed dose (mrad) per 8-oz feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.25</td>
<td>18</td>
<td>222</td>
<td>10</td>
<td>9.6</td>
</tr>
<tr>
<td>5.75</td>
<td>10</td>
<td>140</td>
<td>5.75</td>
<td>6.0</td>
</tr>
<tr>
<td>9.50</td>
<td>14</td>
<td>60</td>
<td>9.50</td>
<td>2.6</td>
</tr>
<tr>
<td>16.50</td>
<td>7</td>
<td>22</td>
<td>16.50</td>
<td>1.0</td>
</tr>
<tr>
<td>20.50</td>
<td>10</td>
<td>16</td>
<td>20.50</td>
<td>0.7</td>
</tr>
<tr>
<td>24.50</td>
<td>10</td>
<td>8</td>
<td>24.50</td>
<td>0.3</td>
</tr>
</tbody>
</table>
I was free pertechnetate, we calculated the potential whole-body doses (per 8-oz feeding) to a newborn infant (Table I), on the basis of an absorbed dose of 0.19 mrad/μCi (52 μGy/MBq) deduced from the data in ICRP 17 (7). If this patient’s infant had been allowed to receive all these 8-oz feedings, then the accumulated total-body absorbed dose would have been about 20 mrad (200 μGy), and the accumulated absorbed doses to the intestine and to the thyroid would have been about 0.5 rad (5 mGy) and 0.4 rad (4 mGy), respectively (7).

Two further conclusions were drawn from these calculations and from the measured rate of excretion. Firstly, the combined use of Tc-99m DTPA aerosol and Tc-99m MAA for ventilation/perfusion lung imaging did not warrant a proscription of breast feeding beyond 24 hr after administration of the second agent. Secondly, for a Tc-99m DTPA aerosol ventilation study alone, breast feeding need not be interrupted for more than 4 hr after inhalation of the aerosol.

ADDENDUM

We had the opportunity to evaluate the secretion of Tc-99m in the breast milk of a patient following a dynamic renal study using 2 mCi of Tc-99m DTPA administered i.v. Fifteen minutes later, 40 mg of Furosemide were administered. The concentration of Tc-99m over a period of 3-22 hr was found to be approximately 0.5% of that observed in the combined DTPA AEROSOL/MAA study described; the effect excretion half-time was 4.3 hr, similar to that found in the combined study (4.6 hr).

ACKNOWLEDGMENTS

We are grateful for the willing cooperation of the patient and the ward staff, and for the secretarial assistance of Miss J. Reynolds.

REFERENCES

3. HEATON B: The build up of technetium in breast milk following the administration of 99TcmO4 labelled macroaggregated albumin. Br J Radiol 52:149–150, 1979
Breast-Milk Radioactivity after a Tc-99m DTPA Aerosol/Tc-99m MAA Lung Study

P. J. Mountford, F. M. Hall, C. P. Wells and A. J. Coakley


This article and updated information are available at: http://jnm.snmjournals.org/content/25/10/1108

Information about reproducing figures, tables, or other portions of this article can be found online at: http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at: http://jnm.snmjournals.org/site/subscriptions/online.xhtml