Excretion of Granulocyte Colony-Stimulating Factor into Human Breast Milk

Hisako Shibata Takahisa Yamane Yasutaka Aoyama Hirohisa Nakamae Taro Hasegawa Chikahiko Sakamoto Yoshiki Terada Genju Koh Masayuki Hino

Clinical Hematology and Clinical Diagnostics, Graduate School of Medicine, Osaka City University, Osaka, Japan

Excretion of human recombinant granulocyte colony-stimulating factor (G-CSF) into milk is reportedly low in rats, but is undetermined in humans [1-3]. We measured concentrations of G-CSF in human breast milk, obtained from a healthy breastfeeding mother, and found that G-CSF was excreted into human milk. A healthy 30-year-old woman was admitted on August 23, 2002, as the peripheral blood stem cell transplantation donor for her sister who had acute myelocytic leukemia. Four months previously, the donor had given birth to her second child and was breastfeeding. Laboratory data from hematology, blood chemistry, urine, electrocardiogram, and a chest X-ray were within normal limits. She stopped breastfeeding and was given lenograstim starting on August 23 (day 1). Lenograstim was administered at 300 µg/day by subcutaneous injection on day 1 and at 600 µg/day by subcutaneous injection from days 2 to 4. On day 4, white blood cell count increased to 56.0 x 10^9/l; the lenograstim dose was, therefore, reduced to 300 µg/day on days 5 and 6. The peripheral blood stem cells were harvested on days 5 and 6; 3.97 x 10^6/kg CD34 cells were obtained. Throughout her hospital stay, she had no subjective symptoms except a low-grade fever and a mild headache. Regarding laboratory findings, platelets decreased to 88.0 x 10^9/l, and the lactic dehydrogenase and alkaline phosphatase levels increased slightly. After having obtained informed consent, using ELISA we measured the G-CSF concentration in her breast milk before and after G-CSF administration. Before administration, G-CSF was under 5 pg/ml, but the peak value after administration was 85.7 pg/ml (Fig. 1). After G-CSF has been injected intravenously or