Kinetics of Granulocyte Colony-Stimulating Factor in the Human Milk of a Nursing Donor Receiving Treatment for Mobilization of the Peripheral Blood Stem Cells

Katsuki Kaida, Kazuhiro Ikegame, Tatsuya Fujioka, Yuki Taniguchi, Takayuki Inoue, Hitomi Hasei, Hiroya Tamaki, Satoshi Yoshihara, Ichiro Kawase, Hiroyasu Ogawa

Department of Molecular Medicine, Osaka University Graduate School of Medicine, Osaka, and Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan

Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for donors of peripheral blood stem cell transplantation (PBSCT) in order to mobilize hematopoietic stem cells. When a nursing woman is a PBSCT donor, rhG-CSF could be excreted into the human milk, and could affect her infant. How long G-CSF remains in maternal milk after the administration of rhG-CSF is still unknown. We recently examined the kinetics of the G-CSF in the human milk of a nursing woman serving as a donor for PBSCT, to determine when the G-CSF level returns to the basal concentration.

The donor was a 25-year-old healthy nursing woman who had given birth to her first child 2 months ago. To prepare for donating peripheral blood stem cells (PBSCs) to her mother with follicular lymphoma who was scheduled to receive PBSCT, the donor began to receive rhG-CSF (filgrastim) on August 14, 2005 (day 1). G-CSF was administered subcutaneously as follows: 600 μg on day 1, 300 μg × 2 on days 2–5, and 300 μg on day 6. The white blood cell count peaked (47.4 × 10⁹/l) on day 6. PBSCs were harvested on days 4, 5 and 6. The total count of CD34+ cells harvested was 3.18 × 10⁸. The only adverse event of G-CSF administration was bone pain, which began 2 days after the start of G-CSF treatment and disappeared 1 day after the last G-CSF treatment. No treatment was required for controlling the pain.

After having obtained written informed consent, the G-CSF levels in the human milk and peripheral blood were monitored. During the administration of G-CSF, each time the donor had a feeling of fullness in the breasts, the milk was expressed artificially using a milking device, and part of the gross quantities of human milk collected was used as a sample for measuring the G-CSF concentration. G-CSF levels were measured in the whole milk, not in the aqueous phase of milk by enzyme-linked immunosorbent assay. To monitor the serum G-CSF level, blood samplings were performed just before the first G-CSF administration once a day. As shown in figure 1, the serum G-CSF level, which was as high as 30,100 pg/ml 12 h after the start of G-CSF treatment, thereafter decreased rapidly despite continuing administration of the agent, and reached 306 pg/ml 24 h after the end of G-CSF treatment. The kinetics of serum G-CSF concentration were similar to the data reported by other researchers [1]. On the other hand, the G-CSF level in the human milk increased gradually and then slowly decreased: the level became detectable 12 h after the start of G-CSF administration, peaked (188 pg/ml) at 22 h, and thereafter decreased gradually and became below the detection limit (<10 pg/ml) of the assay 70 h after the end of treatment.

To date, there has been only one report on the G-CSF level in the human milk of a nursing woman who received...